estimate inverse probability weights based on Beesley & Mukhherjee
ipw.Rdestimate inverse probability weights based on Beesley & Mukhherjee
Usage
ipw(
  stacked_data,
  weight_outcome_var = "WTFA_A",
  samp_var = "samp_WTFA_A",
  external_dataset = "NHIS",
  dataset_name = "MGI",
  id_var = "id",
  cancer_factor = FALSE,
  cancer_factor_var = "cancer",
  covs = c("age_50", "female", "nhw", "hypertension", "diabetes", "cancer", "anxiety",
    "depression", "bmi_cat"),
  chop = TRUE
)Arguments
- stacked_data
- data.table of stacked data 
- weight_outcome_var
- variable name of sampling weights in external dataset 
- samp_var
- variable name of sampling weights in internal dataset 
- external_dataset
- name of external dataset 
- dataset_name
- name of internal dataset 
- id_var
- variable name of id 
- cancer_factor
- logical, whether to include cancer factor 
- cancer_factor_var
- variable name of cancer factor 
- covs
- vector of covariates to include in model 
- chop
- logical, whether to chop weights