estimate inverse probability weights based on Beesley & Mukhherjee
ipw.Rd
estimate inverse probability weights based on Beesley & Mukhherjee
Usage
ipw(
stacked_data,
weight_outcome_var = "WTFA_A",
samp_var = "samp_WTFA_A",
external_dataset = "NHIS",
dataset_name = "MGI",
id_var = "id",
cancer_factor = FALSE,
cancer_factor_var = "cancer",
covs = c("age_50", "female", "nhw", "hypertension", "diabetes", "cancer", "anxiety",
"depression", "bmi_cat"),
chop = TRUE
)
Arguments
- stacked_data
data.table of stacked data
- weight_outcome_var
variable name of sampling weights in external dataset
- samp_var
variable name of sampling weights in internal dataset
- external_dataset
name of external dataset
- dataset_name
name of internal dataset
- id_var
variable name of id
- cancer_factor
logical, whether to include cancer factor
- cancer_factor_var
variable name of cancer factor
- covs
vector of covariates to include in model
- chop
logical, whether to chop weights