Skip to contents

estimate crossfit lasso-based weights

Usage

crossfit_lasso_weights(
  internal_data,
  external_data,
  select_vars = c("id", "internal", "age_50", "female", "nhw", "hypertension",
    "diabetes", "cancer", "anxiety", "depression", "bmi_obese", "bmi_overweight",
    "bmi_underweight", "bmi_unknown"),
  weight_outcome_var = "WTFA_A",
  samp_var = "samp_WTFA_A",
  external_dataset = "NHIS",
  dataset_name = "MGI",
  id_var = "id",
  internal_var = "internal",
  cancer_factor = FALSE,
  ncores = parallelly::availableCores()/4,
  folds = 5
)

Arguments

internal_data

data.table of internal data

external_data

data.table of external data

select_vars

vector of variables to select

weight_outcome_var

variable name for weight outcome

samp_var

variable name for sampling indicator

external_dataset

name of external dataset

dataset_name

name of internal dataset

id_var

name of id variable

internal_var

name of internal dataset indicator variable

cancer_factor

whether to use a cancer factor

ncores

number of cores to use

folds

number of folds to use

Value

return table of results from model for the exposures